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The commonly accepted criterion of optimization

of thin structures that local and overall buckling
loads should coincide overlooks the unfavourable
effect of coupling between these two modes. The
equilibrium at the local buckling load is insta-
ble over a range of the geometrical parameter R,
which is the ratio between Euler en local buck-
ling load, close to R = 1, Instable equilibrium
yields imperfection sensitivity. Two imperfections
are important: initial waviness of the composing
plate strips and initial curvature of the axis of
the structure.

Three models have been investigated: 1, the strut
composed of 2 equal load carrying flanges; 2, the
plate with stringers not affected by local buck-
ling; 3, a simplified representation of a panel
stiffened by top-hat stringers. The models 1 and 2
represent extreme conditions as to mode interac-
tion: nr. 1 being highly imperfection sensitive;
nr. 2 being subject to mode interaction only in a
narrow range of R close to umity. These 2 cases
have been investigated earlier. The purpose with
the model nr. 3 is to explore the significance

of mode interaction for the strength of heavily
stiffened wing panels.

So as to avoid too great complexity the model is
not identical to a real structure. However it
incorporates the geometrical characteristic of the
cross section: less material at the topside than
at the plateside; and the characteristic of local
buckling of these structures: elastic edge res-—
traint of composing plate strips and equal wave
length of their mode in spite of unequal strip
widths.

The stiffness of imperfect plate strips under
these conditions has been established and the
results are used for determining the behaviour

of the model. It appears that initial waviness
reduces the strength close to R = 1. The equili-
brium at the overall buckling load is instable up
to R about 1,1l Consequently, some further reduc-
tion of the strength by initial curvature of the
axis can be expected.

The strength of panels with R say up to 1,3 will
scatter due to differences in imperfections. The
amount of imperfection being unknown the strength
of structures in this range of R cannot be esta-
blished accurately by theory; several tests on
identical specimen will be needed.

Symbols

compressive force in the structure

half of length of clamped structure
compressive force in a single plate strip
geometric parameter = /Kz

deflection of longitudinal”axis of the struc-
ture

width of plate strip

thickness of plate strip
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radius of gyration of the cross section

half wave length with local buckling
deflection of plate strip

longitudinal and lateral coordinates, resp.
ratio of amplitude of strip imperfection to h
ratio of amplitude of column axis imperfection
to j

™R K E .
~«

€ compressive strain of edge of strlp
n stiffness reduction factor
A =2/b
1 l2 e
u==(2n'"" - m'")
w = w/h

subscripts:

E refers to Euler buckling load

b refers to overall buckling load
refers to local buckling load

()' = d( )/d(®/p))

1. Introduction

When the compressive load per unit width is large,
such as in wing panels, closely spaced stiffeners
are needed. Then the local buckling stress is high
and can be close to the overall (Euler) buckling
stress. The optimal design seems to be reached when
these buckling stresses coincide. Fig. | shows how
the two stresses vary with varying width to thick-
ness ratio b/h of the composing plate strips, the
total cross section remaining constant. This figu-
re suggests the location of the optimum. Upon fur-
ther thought one might suspect that the optimum
will be somewhat to the right of the intersectionm,
considering that the load carrying capacity is not
exhausted at the local buckling stress.
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Figure 1. Apparent optimum design.

However these two buckling modes, both stable-high~
ly stable in the case of local buckling; slightly
stable as to overall buckling-, appear to interact.
This interaction can cause severe instability at
the buckling load. The consequence is similar to
the behaviour of thin shells: the structure is sen-



sitive to imperfections. Imperfections reduce the
load carrying capacity distinctly, which then
depends on the size of the imperfections. These
statements throw some light on two astonishing
phenomen which happen to occur with panel tests:

1, the failure load is smaller than as well the
local as the overall buckling load, as established
from classical theory; 2, the panel collapsesexplo-
sively.

The object of this paper is to warn designers for
the unfavourable effect of mode interactiom, to
locate the dangerous area of the governing struc-—
tural parameter and to give some quantitative idea
of the strength reduction due to this effect.

The discussion starts with a model which is very
sensitive to mode interaction. Next comes the

other extreme: a panel where the stiffeners are not
affected by local buckling. Finally an interme-
diate case will be discussed: a model which is
representative for the behaviour of panels rein-
forced by tophatstringers.

Elastic behaviour has been assumed throughout.

2, Problem identification

A very sensitive structure iilshe strut, composed
of two load carrying flanges . Shear webs with-
out longitudinal stiffness maintain the structural
integrity (fig. 2). The upper figure shows the
relation between compressive load P of the flange
and its compressive strain e. The graph has a

kink at the local buckling load P,. From there on
the reduction factor n of the longitudinal stiff-
ness is 41%.

The lower figure depicts the Euler curve of column
lengths above L,. At L. the Euler load is equal

to the local buckling load K,. When column failure
occurs at a load greater than K, the flanges

are in the post-bucklirg state where their stiffness
is reduced in the ratio n. Then the bending stiff-
ness of the strut is equally reduced in the ratio

n and the buckling load is n , as shown by
the curve to the left. It holds for column lengths
smaller than LZ’ at L2 Kb = Kg.

It remains to establish how columns behave of
length between L, and L2. Up to K, the column re-
mains straight. en a small deflection occurs
the flange at the concave side passes into the
post-buckling range. It reacts with its reduced
stiffness. However the flange at the convex side
remains in the unbuckled state (see upper part
fig. 2). It reacts with the unreduced stiffness.
Then the reduction factor of the bending stiffness
of the strut is 2n/(l+n), which is 58%. At a cer-—
tain length L_ this bending stiffness is just
sufficient to maintain the strut in neutral equili-
brium at infinitely small deflection.

When the column length is smaller than L , the
strut is too stiff for the possibility of buckling.
The strut is in stable equilibrium. However when
the length is greater than L_ the strut is too

long for being in equilibrium when deflected. It
collapses explosively. These struts are at the load
K in instable equilibrium. Any disturbance, e.g.
inmperfection of the column axis, pushes the
strength down below K,. This imperfection sensiti-
vity increases with increasing column length and

is maximal at the length L., where local and Euler
buckling load coincide. Exactly the situation which
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Figure 2. Column buckling load K, against length L.
according to fig. | seemed to be optimal.
It is convenient to replace the abscissa L by L_2

or by R = /Kg so as to obtain a non—dimensional
representation. Then fig. 2 transforms into fig. 3.
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Figure 3. Column buckling load Kb against KE'

3. The effect of imperfection of the flanges(]’z)

3.1. The buckling load Ky

The "flat" walls, composing a stiffened panel, are
never flat in the mathematical sense. Depending
on manufacturing they have more or less irregulari-
ty. When loaded in compression deflection occurs




before the local buckling stress is reached. The
kink in the P-e~curve disappears; the curve beco-
mes a smooth line, which has its maximal deviation
from the flat-wall-curve at e,. In the vicinity of
e, the structure gives the maXimal response to the
component of the imperfection which has the shape
of the local buckling mode. In order to get an
idea. of the effect of initial waviness only this
component is being considered. Then with the two-
flange-model the initial deflection is

w_ = a sin mx/b cos my/b. (3.1)
Its amplitude is characterized by the non-dimensio-
nal parametero = a/h. Fig. 4 illusESites the kind
of curve one obtains analytically .
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Figure 4. Load-strain curve & imperfect simply
supported plate strip.

The stiffness of the flange against infinitesimal
increment of the edge strains is dP/de. The reduc-
tion factor of the stifness is

n= d(P/PE)/d(E/EE)' (3.2)
When the imperfection parameters of the two flanges
are equal this n is also the reduction factor of
the bending stiffness of the strut. Then its buck-
ling load Kb =n KE or
5 By 2
TE—=R—=R=3(]‘\))(
b )
This relation permits for any load parameter K/K
te establish the structural parameter R at which
K*%he buckling load. In this way one obtains the
curves given in fig. 5.

be, 2

v (3.3)

It shows that with this model the buckling load is
smaller than K, up to =2 Kl' The maximal
strength reduction occurs at R'= 1, The "optimal"
configuration appears to be the most sensitive

one to imperfection. Even very small imperfection
yields noticable reductio?h)The asymptotic solu-
tion by Koiter and Kuiken yieldg that at R = 1
the reduction is proportional to a“.
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Figure 5. Buckling curves of columns with imperfect
flanges.
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Thompson and Lew1s( ) have shown that the optimum
more and more eroding with increasing imperfection
moves from R =1 to R < 1.

The tangent to the P-e-curve represents the stiff-
ness of the strut against infinitesimal strain in-
crement. The KE_ -relation so established means
that the structuré with the structural parameter

R is in neutral equilibrium under the load , how-
ever only with respect to infinitesimal deflection.
At finite deflection the edge strains of the flan-
ges €, and ¢, differ from €, by a finite amount.
Since n is n6t constant but a function of € the
bending stiffness of the strut against finite de-
flection deviates from n, EI. The non-linearity of
the P-e—curve introduces a non-linear problem. The
question arises: is the strut still in equilibrium
when the deflection is finite; is the load requi-
red for equilibrium smaller or greater than K.?
When the equilibrium load K < KE’ it means tha

the equilibrium of the undeflected strut is unsta-
ble and any casual deflection reduces the load
carrying capacity. A strut is never mathematically
straight. Any deviation from straightness of the
column axis will affect the strength unfavourably.

Therefore the next problem to be considered is: how
is the slope of  the load-shortening curve at the
bifurcation point KE? Is the equilibrium at Kb sta-
ble, neutral or instable?

3.2. The character of the equilibrium at Kb

When the amplitude W_ of the column deflection is
infinitesimal neutral equilibrium involves that
(dK/dWo)b = 0.

When W is finite the possibility exists that due
to non-linearity

[dK/d(Wo)zjb # 0. (3.4)

Then in first approximation the compressive force
which can be supported at small finite deflection
is

K/K, = K /K, + t(WO/Zj)Z. (3.5)



The gradient t d(K/Kz)/d (Wo/2j)2 is to be es-

tablished.

The condition for equilibrium in the deflected
state is

2
d o
The last term of this equation is of the third
degree in W. Then M has to be established as well
up to terms of the third degree in W. This can be
achieved by expressing the flange loads P as
functions of (e-e,) up to the third degree term
using the truncated Taylor expansion

0 (3.6)

2 3
dp d’p 2 1d’p 3
P = Pb + EE'(E eb) + 4 ;;5 (e eb) + 3—;;5 (e eb)
(3.7)
The flanges 1 and 2 have edge strains € and €y
resp., which2are related to W by
e -e, = 2c 48, (3.8)
152 2
dx

The compressive force and the bending moment are
resp.

K=P+P, (3.9)
M= (PI—P2)c. (3.10)
The five equations (3-5, 7, 8, 9, 10) contain the
seven unknown quantities t, €12€ys P, P, Mand W.

oy
P, the resulé is the rela-

Eliminating €., €95 P], 9
tion between M, Wand t

2 2.5 ¥ W
d"wW c \2 jd W= n o 2]
o JRE ["“b (E;) (;‘7 it t‘ii) ’

e (3.11)

M
b dx2

where

()" =d()/a@/p) and u = 3 (2n'? = m'").

The expression between brackets is the multiplica-
tion factor of the bending stiffness n, EI due to
finite deflection. The bending stiffness appears
to be function of x.

Using (3.11) the differential eqﬁatiOQ (3.6) in
non-dimensional form, with V = , is

2c 5?

i 2 .2 . n 2 I 2 &
{v [1 =R Ve Gy eV T i g V)=
=0, (3.12)
where ( )" = % déx) :

This equation contains clearly third order terms
in the small non-dimensional deflection V.

The solution of this equation is not unique; V_ the
deflection in x = 0 is undetermined
within the range of small but finite values.
Substitution of the solution into (3.12) yields a
left—hand-sids, which,is the sum op terms of the
orders V., V° and V ~. Since V_ is undetermined
each of these 3 terms must vanish, which yields

3 linear differential equations for the 3 compo-
nents of V

V= V] + V2 + V3,
V2, V3

2

whgre V,, are resp. of the order Vo’ Vo 5

v
o
Their solution for the column of length 2 L

ped at its ends is V = Vio (cos mx/L + 1) +

J usz A\ A (cos 3mx/L + 1).

clam-

8 10

Further the differential equation stemming from

A (3.13)
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the third order part yields
3 (K/Kl) 3 4/nu 2
e Mgk & oy .)b 5
o J R .
The tangent to the load-shortening curve in the
bifurcation point Kb is
1 25 -1
d(X/K,) (=-n")
ST e P 3 (3.15)
d(—AL;Lez) b 3u
Since n and -n' are positive it follows from (3.14)

that t < 0 in the range of where ¥ > 0. Over
this range the equilibrium a Kb is unstable.

(3.14)

t =
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Figure 6. Load-strain curves and tangents to the
load-shortening curves at the bifurca-
tion load Kb'

Fig. 6 shows for a number of imperfections a the
tangent to the load-shortening curve at the bifur-
cation, when K is the buckling load K, . The insta-
bility is more severe with decreasing «. With small
values of o it is maximal in the region of R be-
tween 0,9 and 1,0,

As remarked by Gilbert and Calladine(6), it follows
from the formula of p that for any value of a p=0
when n = 0,608. This limit of the unstable region
is in fig. 5 the straight interrupted line through
the origin.

When the equilibrium is unstable a disturbance of
the equilibrium causes explosive collapse at 5
Non-straightness of the column axis reduces the
failure load and, as can be expected, in corres-
ondance with the severity of the unstability.



4, The effect of imperfection of the column axis

@)

4.1, Initial curvature of the column axis

The imperfection is chosen in the shape of the
overall buckling mode, therefore

e eo (cos mx/L + 1) (4.1)
Its amplitude e 1is characterized by the non-dimen-
sional parameter B = eo/j.

The problem is to establish the deflection W at any
load K and more in particular to find the maximal
load the strut can carry as a function of B and of
the structural parameter R.

The differential equation of the strut is
2

X [M+K (w+e)]=0.

2
dx
M follows from (3.11) with t = 0 and n,, ¥, repla-
ced by n and p pertaining to K/K . Thé non-dimen-
sional differential equation then is
v - a3 o ;—R K/Kl[v + }B(cos mx/L + 1)]}" = 0.

(4.2)
With the preceding problem V could be decomposed in
parts of different order due to the indeterminate-
ness of V. In this case fa any load below K
there is a unique value of V_. Then exact soTi@fion
of V would require an infinite series. This however
would do too much honour to eq. (4.2), which gives
only an approximate description of the behaviour of
the strut at finite deflections because it is based
on a truncated Taylor expansion of P. This trunc-—
tion accounts only for terms up to the third degree
in V' excluding terms of highe degree. The mechani-
cal significance of the suppression of the higher
order terms is that y is considered to be constant
in the range of strains occurring in the deflected
state, however p appears to vary quite distinctly,
more in particular at small values of a. This is a
consequence of the rapid change of the slope of the

P-e-curve near to El'

Therefore the solution obtained from (4.2) is appro-
ximative, only reliable at rather small deflection,
therefore with small imperfection B. This approxi-
mate solution cannot indicate more than the trend
of the effect of non-straightness of the strut. Un-
der these conditions an approximate solution of the
approxamating differential equation will do.

The solution for the strut clamped at its ends may
then have the form V = V_ (cos mx/L + 1), where V
can be established by means of the Ritz-Galerkin
method. This yields the equation

RIS o iy 3 UK
(1 R Kg) Vl 3uR Vl = 7ok Kg B. (4.4)
With constant K n and ¢ are constant. Then a gi-
ven value of B yields 2 positive roots of V,. With

increasing B these 2 roots approach each otéer until
they coincide. The corresponding value of B is the
maximal imperfection at which the load K can be sup~
ported. Therefore this leoad is K for this imper-
fection B. When the roots coinciggxdﬁ/dvl = 0, which

yields
i
= 1 K :
Ve [0-mon] yow

Next from (4.4) fo%lows the imperfection at which
the column strength is limited to K.

) [a - ,']—RI’E—‘L)"’/U]%.

&
B=gng (4.6)

Figure 7. Strength reduction by imperfection of
column axis.

- Fig. 7 shows for a small and a large value of a

the column strength as a function of the structural

parameter R and for some values of the column im-
erfection B With decreasing a and increasing B

Ehese data are less reliable.

The trends apparent from these curves are the follo-

wing:

I. The effect of B is less than proportional to B.
For small B the r593ction of the strength is
propertional to B' 7,

2, The reduction is fairly constant over the range
0,8< R <1,6.

3. The effect of B decreases with increasing a.

4, With large flange imperfections the strength
reducing effect due to B is inferior to that
by a.

5. With small flange imperfections the effects of

a and B have comparable size. In the region of
R 1,5 the effect of B can even be predominant.

A recent investigation by Gilbert and Calladine(é)
has brought more clarity on the relative importance
of the two imperfections. They consider a model
still more simple than the one considered up to
here, a model which permits exact solutions. It con-
sists of a strut composed of 2 stiff bars of equal
length interconnected by a short deformable element
of the two flange type. It appears that the reduc-
tions in the cases a = n, B =0and o =0, B =n
are about equal; the latter being slighter greater.
Also the tendency appears that with increasing R
the effect of B is greater than the effect of an
equal value of a. The superpossition of the two im-—
perfections increases the reduction only slightly
in comparison to the effect of the imperfections
considered separately; the increase is about con-
stant in the range 0,8 < R < 1,6.

These results appeal to the intuitive conjecture
that the addition of another imperfection does less
harm than the foregoing imperfection.

The investigation of the models considered so far
has shown that in the vicinity of R = 1 the
strength is clearly affected by imperfections. The
strength is less than K, even when K? >K_ . Since
the strength depends on the amount of impérfection
and even very small imperfections reduce the
strength quite drastically, whereas the amount of
imperfection of actual structures is unknown, the



strength of struts with R close to l cannot be es-
tablished theoretically. One has to resort to com—
pression tests and in order to account for scatter
of the imperfections to do a series of tests on
identical specimen.

4.2. The effect of "crushing"(g)

An in unloaded condition matﬁmatically straight
strut can nevertheless be curved in the loaded
condition. This phenomen 1s present when the strut
or panel forms the compression side of a box beam.
The box beam is curved when loaded in bending, more
in particular with beams of small depth. Then the
strut or panel supported on regularly spaced frames
has to follow this curvature and is consequently
loaded in bending. The end sections of one bay are
rotated relative to each other. Consequently before
buckling the strut is in a non-uniform state of
strain, which means that its flexural rigidity
varies along its length. This prebuckling state has
the effect of reducing the strength.

The obvious parameter governing this reduction is
the ratio of the radius of gyration (c in the pre-
sent model) and the distance H of the member to the
neutral plane of the box beam. In actual wing struc-
ture the practical limit ot j/H is about O,I.

The investigation learnmed that witE small j/H the
reduction is proportional to (j/H)" therefore of
little significance with j/H < 0,05. Also at j/H=
0,1 the additional reduction by j/H is inferior
to the one by @, except when a is very small. E.g.
with @ = 1,25% the the two reductions are about
equal around R = 1,2,

These results, thereby recalling Gilbert and Calladi-
ne's conclusion on the more or less similar effect
of excentricity, indicate that "crushing" needs not
to be taken into account, nor any initial bending
from other sources like surface loads of wing pa-
nels.

5. Local buckling confined to one side of the
structure

The model considered in the preceding sections is
very sensitive to mode interaction, and consequent-—
ly to imperfections, due to the fact that upper
and lower flange are both and equally subject to
local buckling. When buckling occurs of a strut,
comprising a number of bays separated by regularly
spaced supports, the state of strain in the upper
flange of one bay is equal to the state of strain
in the lower flange of the next bay. Therefore the
elastic line has its points of inflection precise-
ly at the supports.

The situation is different when the crosssection is
not symmetric. Asymmetry may be due to unegail
flange imperfection with the previous model or
due to geometrical asymmetry of the crosssection.
The latter condition is present in stringer reinfor-
ced skinpanels. This asymmetry causes different
flexural rigidity for equal positive and negative
curvature. Consecutive bays differ in flexural
rigidity. Consequently the stiffer bays support

the adjacent weaker ones.

A pronounced case of this type is the thin plate
reinforced by stiffeners which do not participate
in local buckling of the plate. It represents the
lower extreme of the phenomen of mode interaction,
in contrast to the previous model which is repre-
sentative for the upper extreme.

Panels with large stiffener spacing have low local
buckling stress of the plate. Their overall buck-
ling stress is much greater. Therefore their buck-
ling stress ratio R is far above unity. Then, as
apparent from the previous model, is far above
B & K% is not affected by imperfections and can

be established with the Euler formula thereby ta-
king into account that the effective modulus of the
plate is nE.

When studying the possibility of unfavourable mode
interaction attention can be restricted to panels
with R close to unity., This inevitably means heavi-
ly reinforced panels, where stringer and plate sec-—
tions are about equal. As a representative struc—
ture has been taken the case where the sections

are equal. The results obtained with ratios between
1/3 and 3 are only slightly different.
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Figure 8. Panel buckling load Ky against KE'

Fig. 8 shows the /K -R-curve for the perfect
plate and for a plate with a = 0,05.

With the perfect structure the reduction factor of
the bending stiffness for K~ > K, is 0,8. This
reduces the transition zone at = K to the range
1,0 < R < 1,25, The equilibrium at = K, is in-
stable over the narrow range 1,0 < R < 1,%1. These
upper limits are very low in comparison to those

of the two-flange model where they are 2,45 and
1,725 respectively.

With the imperfection a = 0,05 is smaller than
K, up to R = 1,15, The maximal reductionat R = 1 is
9%, whereas the two-flange model with o = 0,05 has

17%.

Fig. 9 depicts the load-strain cirve. Due to the
large value of n, (0,8) the kink in the curve for
the perfect structure is only very weak: Consequent—
ly the curve for o = 0,05 lacks a distinct rounded-
off part. Again the slopes of the load-shortening
curves at the bifurcation for K = l(.B are shown.

The equilibrium at Ky is unstable, but the instabi-
lity range of R has its upper limit at R = 1,01,
The steepest tangent, which means the severest in-
stability, occurs at R = 0,85 where K, /K, = 0,814,
The maximal slope is however much milder than with
the two-flange model. Consequently the sensitivity
to column axis imperfection will be slight.



The conclusion can be that mode interaction and
instability at .the buckling load is confined to a
very narrow region in the immediate vicinity of

R = 1, where the buckling load is slightly below
K, . The reason for this mild behaviour is that
o% two consecutive bays the buckling mode yields

increased compressive strain in the skin of one

bay and decreased strain in the adjacent one. So
the bending stiffness of the first one decreases
but it increases in the other one tempering the

destabilization of the first one.

Ths concept leads to an important conclusion' on
the manner in which compression tests should be
carried out when non-lineair behaviour of the
structure occurs. Pin-ended columns or panels,
though loaded in the centroid of the crosssection,
will nevertheless be loaded in bending due to the
gradual shift of the neutral axis whith increasing
compressive strain. Test specimen of this kind
will inevitably buckle with the concave 8ide at
the side most affected by non—linearity. Their
failure load will be inferior tothe buckling load.
Compression tests should be carried out on speci-
men with rigidly clamped ends, taking their

length twice the frame spacing. Then the point

of application of the load before buckling moves
gﬁg neutral plane. For this reason the boundary
conditions, assumed in the analysis, refer to
clamped ends.
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SPECIFIC SHORTENING

Figure 9. Load-strain curve of imperfect panel and
tangents to the load shortening curve at
the bifurcation load Kb'

6. Stiffened panels

6.1. Definition of the problem

The "extreme'" cases discussed in sections 3, 4 and
5 were contrasting because the two-flange-model is
equally affected by local buckling at both sides,
whereas the other model was subject to local buck-
ling only at one side. Real panels are situated
somewhere between these two extremes. Their diffe-
rence with the model of section 5 is that the top
side of the stringer is subject to local buckling.
Their difference with the twu-flange model is

that the topside of the stringer has much smaller
crosssection than the opposite side of the panel
structure and consequently affects the behaviour
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of the structure to a lesser degree. The problem
is to locate their position between the "extreme"
cases. Some research of this kind has been perfor-
med during recent years. )

Tvergaard(g’lo) investigated the integrally stiffe-
ned panel. The stiffeners have rectangular cross-
section and their width is much larger than the
plate thickness. The way is which the stiffeners
distort due to local buckling of the plate is just
torsion. The torional stiffness gives a fair
amount of restraint at the edges of the plate
strips and consequently the stiffener torsion is
small. In so far the behaviour of this structure
cannot differ mech from that of the model of sec-
tion 5. An important @use of difference is the
fact that Tvergaard considers one single panel
loaded in the centroid of its crosssection. Then
the reduction of the strength is more severe than
with clamped ends or with the multi-bay panel, as
discussed in section 5. With clamped ends the
incorporation of stiffener torsion will presumably
yield results not much different from those ob-
tained in section 5.

Still open is the question of the behaviour of pa-
nels with thinwalled stiffeners, such as have Z-
or tophat section. Then local buckling distorts
the cross section as well of the stringer as of the
plate. The local buckling mode depends on quite a
number of geometrical parameters. The crosssection
consists of several plate strips of different
width and thickness. The ratios of the widths and
of the thicknesses are the determining parameters.
The coherence of the strips requires equal longi-
tudinal wave length of all strips, therefore dif-
ferent ratios of wave length and strip width,

The fact that the strips buckle together means that
their buckling stresses are equal. Consequently
their buckling coefficients will be very different.
Equality of wave length and buckling stress is
being achieved by bending moments occuring between
the strips at their junction. These moments can
have a stabilizing effect (positive elastic res-
traint) or destabilizing effect (negative elastic
restraint).

The investigation of mode interaction requires the
determination of the local buckling mode and of Ky
Methods are available.

Next comes the post—buckling behaviour of the per-
fect structure and the behaviour of imperfect
structures. This is a very complex problem.

Let be assumed that the stiffness of edge restraints
constant with increasing edge strain. Then the
problem is to establish the stiffness of a strip in
compression as function of the edge strain for
arbitrary wave length and arbitrary edge restraint
whereas these restraints at the two edges can have
any ratio positive or negative. This is a cumber-
some problem though its solution does not even
solve the problem of panel behaviour under compres-
sion without bending, where all the edges have the
same strain. The cause of this unsuffiency is that
under the assumption of constant edge restraint

the increase of the edge rotations with increased
compression will be different for adjoining strips.
So in fact the stiffness of edge restraint must
vary with the edge strain so as to yield compatible
edge rotations.

The need to establish the bending stififness of the
panel introduces an additional problem. Plate



strips not parallel ta the panel plane have diffe-
rent edge strains due to panel bending. The loca-
tion of the neutral plane is unknown and there-
fore the ratio of the edge strains. So the beha-
viour of plates with arbitrary ratio of edge
strains, arbitrary wave length, ratio of edge
restraints and amount of edge restraint would have
to be investigated. These data are needed for ,sol-
ving the mode interaction problem of the stiffened
panel. If they were available the remaining inter-
action problem would not be too cumbersome. The
main problem is the one on strip behaviour just
defined.

Recalling that ignorance of the amount of imper-
fections excludes the possibility to predict the
strength of these structures exact solution of the
problem seems to have little practical value and
would be tooambitious. On the other hand it serves
a real need to explore the extent of the range of
R in which interaction presents reduced strength
and the degree of importance of this reduction.

Therefore the logical step after having considered
the two "extreme" models is to consider a model
which is not identical to but representative of
real panel structures, choosing the model such
that the problem of the behaviour of its composing
strips is not too complex.
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Figure 10. Local buckling mode of panel and sim-
plified model of the panel.

6.2. The model of the panel

The selected structure is a panel stiffened by top-
hat stringers (fig. 10). The ratio of strip width
and thickness is arbitrary. The cross sections of
plate and stringers are equal.

The local buckling strain has bee?l?stablished by
means of a straightforward method as
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The half wave length of the mode is 1,90 b. The
mode shape and edge rotations are shown in fig. 0.

The joints of plate and strimger have been assumed
in the intersection of the plite argithe side
strips of the stringer, whereas in the real:struc-
ture the rivet joint will be somewhere near the:
centre of the flanges. With the joint along the
rivet row the edge deflection of the plate strips
would be non-zero, which would complicate the pro-
blem quite seriously. Another difficulty would be
to deal with the flange loaded in the rivetline.
However under these realistic conditions the de-
flections at the intersection of plate and side
strips would be close to zero, as can be conjec-
tured by inspection of fig. 10. Further considering
that the flanges contribute only 14%Z to the total
crosssection a rude approximation of their condi-
tion seems acceptable.

The kind of restraint offered to the edges of the
strips appears from the curvature of the mode.
Strip 2a clearly obtains support from plate strip
2b and stringer strip 4, these latter then having
negative restraint. The upper edge of strip 4 is
being restrained by strip 1. The figure also
mentions the coefficients of restraint C defined
by

edge moment
edge rotation

_ _  bending stiffness of plate
plate width

With strip 4 C_ and C_ refer to the symmetric and
anti-symmetric part of the mode. The figures indi-
cate that the wide plate strip 2a, being the wea-
kest part of the structure, gets very stiff edge
restraint from the adjoining strips.

The model selected for the analysis of mode inter-—
action is for various reasons a simplified repre-
sentation of the basic structure., Only those
strips are represented which have symmetrical buck-
ling mode: strips nr. !, 2a and 2b. The flanges
nr. 3 can be omitted since they contribute very
little to the bending stiffness of the panel in
comparison to the plate nr. 2. Also the axial load
carried by the stringer sides nr. 4 is being ne-
glected so as to avoid serious complications ari-
sing from unequal restraint stiffnesses at upper
and lower edge and unequal edge strains with panel
bending.

The function of the stringer sides to maintain

the integrity of the assembly is being preserved.
These omissions have only slight influence on the
radius of gyration j; it increases from 0,377 b to
0,394 b.

The emphasis in this investigation falls on the
effect of stiffness reduction of the stringertcp
nr. I as a rather small flange affected by local
buckling.

A further simplification is that the coefficients
of edge restraint C are assumed not to vary with
the edge strains and remain equal to their value
at  local buckling, given in fig. 10. As demonstra-
ted in section 6.] the stiffness of edge restrains
varies with the applied strain as well in compres-
sion as in bending of the panel. Moreover it de-
pends on the imperfections assumed for the various
strips. The aim of this investigation is to get
some idea of s?gnificance of mode interaction with
stiffened panels and to answer the questions: what



is the range of the structural parameter R over
which mode interaction reduces the strength; what
is the order of magnitude of this strength
reduction due to imperfections of the strips; what
about the stability at the bifurcation and the
effect of additional imperfection of the panel
axis. For this kind of orientation in the problem
a qualitatively correct representation of the be-
haviour of the structural elements seems accepta-
ble. Then the assumption of edge restraint coeffi-
cients of the correct order of magnitude satisfies
the purpose.

The wave length of the strip deformations is as
established for local buckling.

Assumptions have to be made on the imperfections
of the several strips. For obvious reasons they
have been taken similar to their local buckling
mode shown in fig. 10. The size of the imperfec-
tions however has no relation to the wave ampli-
tude in local buckling. It has been assumed that
the ratios of the initial deflections in the cen-
tre of the strips to the strip widths are equal
for all three strips. Three degrees of imperfec-
tion have been chosen (Tabel I).

Table 1. Imperfections o = amplitude: strip thick-

ness.

strip I 11 III |
1 0,012 0,024 0,036

2a 0,025 0,050 0,075

2b 0,010 0,020 0,030

6.3. The behaviour of elastically restrained
strips

The tool required for establishing the bending
stiffness of the model as defined in section 6.2
is the knowledge of the lgfpjﬁgortening relation
of plate strips, supportedYthelr edges and having
symmetrical elastic restraint at those edges, and
at prescribed wave length. This as well for the
perfect as for the imperfect strips.

The governing paramters are the wave length para-
meter A = /b, the coefficient of restraint C, the
imperfectionparameter o and the compressive strain
parameter €/¢,. Instead of C will be taken the
local buckling coefficient k defined by

2 ®'E h,2
0£=k ———-—2 ('E).

12(1=-v")

The relation between C and k is

S s L
C=~-2n Y (B Tgh 5 B+ vy tg 5 =2 Ty

where B = % (kx+1)i; y = %—(kk—l)i.

The local bu%kling mode is e
Cosh 5 B cos yn — cos 7Y Cosh Bn
w = wh sin € ,
L m
Cosh 76 - cos oy

(6.1)
where & = mx/%, n = ry/b and yh is the amplitude
of the deflection. The imperfection is given by
w =aZ, (6.2)
i8s amplitude being ah. /

The method by which the P/P\;?Z&ation has been
obtained is in principle idéntical to the method

used for establishing the behavi?gs of the simply
supported plate strip with A = 1 . It consists

of assuming a deformation mode corresponding to the
local buckling mode (6.1). This assumption appro-—
ximates the behaviour of the strip very well in the
small range of e/e, close to unity which occurs in
this problem. Then the linear differential equation
for the Airy stress function F can be solved exact-
ly. Thereupon F en y are substituted into the dif-
ferential equation stemming from the condition of
equilibrium in the direction normal to the plate.
Since w is an approximate solution, F and w do not
gatisfy this condition. The Ritz—Galerkin condition
requiring minimal potential energy, yields for gi-
ven a and €/e, the approximation of the deflection
amplitude wh.

The P-e-relation so established is in parametric
form, for Poisson's ratio v = 0,3,

W

s/e2 o i } Aw(w+2a), (6.3)
P/P, = E%E + } Bo(wr2a), (6.4)

where A and B are functions of A and k.

The formulae (6.3,4) correspond to those for the
simply supported strips. Contrary to the simply
supported strip, where A and k are single valued
(A=1, k= 2), in this case X and k can have any
value. The derivation of A and B appears to be a
very laborious operation. Also the formulae of A
and B are so lengthy that their reproduction ip
this conte¥¥2js prohibitive. They will published
separately 3

From the formulae (6.3,4) follow the quantities

n, n' and p needed for establishing the behaviour
of the model.

1 + BX
n = d(P/PQ)/d(E/Ez) b = F (6.5)

A-B)XY
n' = dn/d(p/p)) = - —2ODK___
a(1+AX)" (1+BX)
Y{4-5BX)n’

1 '2 "
wo=g(2ntton™) = - e IA) (1+BD)

where X = Y3/a and Y = at+a.

The known values of A and k of the strips yield the
values of A and B, given in tabel II, together
with B/A. The post-buckling stiffness of the per-
fect plate strips is n = B/A, because X = =, For
comparison table II mentions these quantities also
for simply supported strips at the given wave
length parameter A and at A = I.

Tabel II. Stiffness parameters A and B.

stripnr. | A C k2 A B n=B/A

1 1,90 -2,42 1,340 | 2,1183 1,5067 0,7113

2a 0,76 12,9 5,82 | 1,1722 0,4463 0,3807
2b 1,90 -2,59 0,931 4,370 3,476 0,7954
- 0,76 0 4,31 | 1,7402 0,6432 0,3696
- 1,00 D A 1,1536 0,4710 0,4083

= 1,90 0 5,89 | 0,2726 0,1441 0,5288
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1t appears from the data for C = 0 that the post-
buckling stiffness increases with A. This is plau-
sible because increased longitudinal waviness



(smaller X) makes the strip more flexible, thus
reducing its stiffness. Comparing the figures for
C=0and C # 0 it appears that for A < 1 C > 0
yields a slight increase of n, whereas for A > |
C < 0 yields considerable increase of n.

The load-strain curves of the strips for C # 0,
a = 0 are shown in fig. 11.

10 1.5

E/EC 20

Figure 11. Load-strain curves of composing plate
strips and model.

6.4. The buckling load of the perfect model

The crosssection of a strip i is A, = F.A, where

A is the total cross section of th mod&l. The
stiffnesses of strips 2a and 2b can be combined

to a single stiffness of a flange 2 with the cross-

section A2 = Aza + A2b:
(nF), = (nF), + (nF),,. (6.6)
Then" the benalng stifgness of the model is
(nF), . (nF),
nb EL = ?ﬁfj;:?ﬁfjg EAc s
Since
F_ F
El = F11F2 EAC2
1.0
and by definition F1 : 3 F2 =1
n, n
1 2
Tt e (6.7)
(nF) +(nF),
From fig. 10 follows F,=1/5,2, F, = 3/5,2,
o = 1,2/5,2. Then the n's given in tabel II yield
n, = 0,4992 and n, = 0,6576. (fig. 11)
Fig. 12 gives Kb/kl = an. (6.8)

The panel length 2L  (the parameter R ), at which
the model is in neutral equilibrium 8t the load
Kl’ can be established as follows (fig. 13).

The buckling mode consists of a part of length L.,
where flange 1 is at the concave side of the mode ,
and of the two parts of length } L I’ where flange
2 is at the concave side. Since be%ore buckling the
strain is just €,, the part L. has n, = 0,7113,

n, = 1, and the part L has n, = 1, n, = 0,4992.
A% the tramsition of parts L_ and LII %he bending
moment vanishes. The parts L_ and L can be conc.-—
dered to be pin-ended columns and t%gir buckling
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Figure 12. Buckling load Kb of perfect model.
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Figure 13. Overall buckling mode of panel at R -

loads are equal. Then L12 and L are proportional

2
: . gI
to the bending stiffnesses of the two parts.

The bending stiffness reduction factors of the two
parts following from (6.7) are n o= 0,7531,

n.. = 0,8383. n
P b 11,4
ZII.O &by Fhoy ; LI[H(nI ) ] 4 .
o he KEE i }.2 n"EI
K = K =n——=1 (nI * Ny Y=
I L e
BTSN TR L 3
IOEERL § Kl
Since Kb = Kl
il 4 b-2 _
R, = 4(n* +n ;%) " = 1,258,

The instable range of R (1< R< 1,258) appears tc be
much smaller than with the two-flange model

(1< R< 1,725) but greater than with the panel where
only the plate is subject to local buckling

(1< R< 1,11).

6.5. The buckling load of the imperfect model

At a given e/e,, equal for the 3 strips, follows
from3(6.3) thelir w, or beEter Y by rewriting (6.3)
as Y~ + [(1-e/e,) 2/A - «“J¥ - 20/A = 0. (6.9)
Thereupon (6.5) ‘'yields their n and next (6.6,7)
yield the reduction factor of the bending stiffness
nb.
P.=F, K
i i
Ry= D S
(P/P,). follows from (6.4), then Kb/KQ is known.
for the chosen value of €/e¢,. Theraftér R pertai-
ning to /K follows from %6.8). The Kb/KZ - R

curves for tﬁe three cases of imperfection, defi-
ned in tabel I, are shown in fig. l4.

L (P/Pg)i Fi Kl' (6.10)

The maximal reductions of the buckling load, oc-
curring at R = | are resp. 9, 12,5 and 147 . For

R> 1,35 Ky exceeds K . With R close to unity the
strength reduction by strip imperfection appears
to be not negligible.
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Figure 14. Buckling load Kb of imperfect models.

6.6 The character of the equilibrium at Kb

The derivation of the differential equation repre-
senting the condition of equilibrium at small fini-
te deflections is similar to the one given in sec—
“tion (3.2) for the two-flange model. Due to the
lack of symmetry of the model the expression for
the bending moment contains also a term of the
second degree in V', The coefficients appearing in
M have of course a greater complexity, being func-
tions of R,n., n.', u., (i =1,2a, 2b).

The dlffeanélal equaklon corresponding to eq.
(3.12) reads

2
Gy \ L EE g ] 2
{v [1+Al—§v (A,-2A, )-p-7 Vi g ]+
1 2\~
MR T LR ) -
where p = j2/c2 =FF, V= We,

Hence (W /2j)2 =V “Jb4p, and A, A,, A, are rather
complicatel functions of the stiffness tharacteris-—
tics of the strips, n, n' and p, pertaining to €y

G e IR T VI e

0, (6.11)

>
[}

3 3 3
2 = (71 + Yy ”2)/(Y| * Y07

2
Ay = 2(y,9, + \(1‘152)/(\(I * Y,

where
Yy S mFps Yy T Yo oy, = (B, + OF)yy,
$ == !n,l, ¢y = = 4, + ()L, Yy,

o = [Gm),y, + G 1/, - = n'Zb)Z/Yzz-

The solution of (6.11) for the clamped panel of
length 2 L is

bn',

53 L& 2 X _
vV = Vlo(cosni+l) + 3 Alp glo (cos ZnL 1) +
1 2 2R 3 3 X . 1 2
+ 37 (A2+§ Al ) ;7 le (cos L Y(6.12)
and
d K/K Ay 40 A z 2
A L P e A 1 R
t = 7|5 =T ] . 'p— . (6.13)
d(WO/ZJ) b v + A3

The slope of the load-shortening curve at the bi-
furcation is

d K/K, i (ﬁ + A3)2 R

(ALLe {(Y+Y2 2R —BAZL
U |

(6.14)

The load-shortening curves for the three cases of
imperfection, defined in table I, together with
the tangents at the bifurcation are given in fig.15.
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Figure 15. Load-strain curves of imperfect models
and tangents to the load-shortening

curves at the bifurcation load Kb.

The equilibrium at appears to be unstable for
R<1,1. In comparison to the "extreme" cases

(figs. 6 and 9) the peaks of the load shortening
curves are much sharper for this panel model.

It implies that a panel without imperfection of the
panel axis would fail explosively at when the
geometrical parameter R<l,l. Presumably it does
not’ imply that the panel is more sensitive to axis
imperfection than the two-flange model (section4. 1)
More 51gn1f1cant for this effect is the negative
slope t given by (6.13).
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Figure 16. d(E— )/d(ij) at the bifurcation load

Kb %f three models



Fig. 16 compares these slopes of case II (cz2 =0,05)
; a

with the slopes of the extreme cases, both at

a = 0,05. It appears that the lower extreme case

(section 5) is almost insensitive to axis imper-

fection. The maximal slope with the panel model is

half of the maximal slope with the two-flange

model, not only in case II but as well for the

cases I and III when compared with the two-flange

model fora=aza(Tab1e III). The maximal

There are reasons to suspect that this addition
reduction is not significant.

Scatter of imperfections with tophat-stiffened
panels where R is between, say, 0,7 and 1,35 yi
scatter of compressive strength. The strength o
these structures cannot be predicted with great
precision. Tests on a number of identical speci:
have to be carried out.

The strength of pin—ended panels is not represe

Table III. Comparison of maximal post-—buckling
slopes t.
case | o=o, panel model two-flange model
I 0,025 =3, 0 = 556
11 0,05 - 1,31 - 2,65
171 ) 0,075 | - 0,74 1,6 1.
- 0,10 i - 1,1

slope in case II is about equal to that of the
two-flange model at o = 0,10, where axis imper-
fection adds little to the strength reduction.

As appears from fig. 7 the effect of axis imper- X
fection extends into the range of R where the
equilibrium at is stable. Before reaching the

stable load level K passes through the region 3
where the stiffness characteristics - in particular i
the positive y ~ are such that the structure res-

ponds with large deflections to the initial curva- 2

ture. Deflection reduces the bending stiffness.

It exhausts the load carrying capacity at K :

So as yet the question is unanswered upto which
value of R axis imperfection affects the strength
unfavourably. It is intended to analyse this effect.
As a tentative conclusion it might be conjectured 5.
that for R>1,35, where exceeds K,, the effect

of small axis imperfections will be'negligible.

7. Conclusions

6.
The value of the géometric parameter R is decisive
for the loss of compressive strength of reinforced
panels due to interaction of the local and the
overall buckling modes. The detrimental effect of
mode interaction is maximal at R = 1, the struc~ ¥

ture commonly considered to be optimal. When R?> 1
the stiffeners are negligibly little affected by
local buckling. Then the effective bending stiff-
mess can be established taking into account the
post-buckling stiffness of the plate at large
e/e,. This procedure based on the "effective width" g,
-coficept is established practice. The effect of
imperfections is neglible.

When tophat stiffened panels have R> 1,35 the im-—
perfections: initial waviness of the thin walls 9.
and initial curvature of the panel axis have ne-
gligible effect on the compressive strength. How-
ever the buckling load depends on the post-
buckling characteristics of the entire structure:
plate and stiffeners. This means that the deter-
mination of requires knowledge of the bending
stiffness of the panel in the post-buckling state.
This problem is as yet unsolved. il.

At R<1,35 is smaller than both Euler and
local buckling load; the reduction depends on the
amount of initial waviness and to some, presumably
less, extent on axis imperfection. The maximal
reduction by initial waviness, occuring at R = 1
is in the order of 10%. The additional reduction
by axis imperfection has not yet been established.
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tative of the strength of multi-bay panels. The
position of the neutral plane shifts with incre
sing compressive strain away from the side of t
plate, causing bending before buckling, thereby
lowering the failure load. Tests should be carr:
on clamped specimen.
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